The Vertex - Face Correspondence and the Elliptic 6 j - symbols

نویسنده

  • Hitoshi Konno
چکیده

A new formula connecting the elliptic 6j-symbols and the fusion of the vertex-face intertwining vectors is given. This is based on the identification of the k fusion intertwining vectors with the change of base matrix elements from Sklyanin's standard base to Rosengren's natural base in the space of even theta functions of order 2k. The new formula allows us to derive various properties of the elliptic 6j-symbols, such as the addition formula, the biorthogonality property, the fusion formula and the Yang-Baxter relation. We also discuss a connection with the Sklyanin algebra based on the factorised formula for the L-operator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ELLIPTIC INTEGRABLE SYSTEMS Generalised Elliptic 6j-Symbols in Terms of the Vertex-Face Intertwining Vectors

We review a recent result on a formula of the generalized elliptic 6j-symbols expressed in terms of the fusion of the vertex-face intertwining vectors. The formula is derived by identifying the k fusion intertwining vectors with the change of base matrix elements from Sklyanin’s standard base to Rosengren’s natural base in the space of even theta functions of order 2k. We also give a list of ex...

متن کامل

The Vertex-Face Correspondence and Correlation Functions of the Fusion Eight-Vertex Model I: The General Formalism

Based on the vertex-face correspondence, we give an algebraic analysis formulation of correlation functions of the k × k fusion eight-vertex model in terms of the corresponding fusion SOS model. Here k ∈ Z>0. A general formula for correlation functions is derived as a trace over the space of states of lattice operators such as the corner transfer matrices, the half transfer matrices (vertex ope...

متن کامل

Fusion of Baxter’s Elliptic R-matrix and the Vertex-Face Correspondence

The matrix elements of the 2× 2 fusion of Baxter’s elliptic R-matrix, R(u), are given explicitly. Based on a note by Jimbo, we give a formula which show that R(u) is gauge equivalent to Fateev’s R-matrix for the 21-vertex model. Then the crossing symmetry formula for R(u) is derived. We also consider the fusion of the vertex-face correspondence relation and derive a crossing symmetry relation b...

متن کامل

Dynamically twisted algebra Aq,p;π̂(ĝl2) as current algebra generalizing screening currents of q-deformed Virasoro algebra

In this paper, we propose an elliptic algebra Aq,p;π̂(ĝl2) which is based on the relations RLL = LLR, where R and R are the dynamical R-maxtrices of A (1) 1 type face model with the elliptic moduli shifted by the center of the algebra. From the Ding-Frenkel correspondence , we find that its corresponding (Drinfeld) current algebra at level one is the algebra of screening currents for qdeformed V...

متن کامل

The elliptic algebra Uq,p( ̂ slN ) and the deformation of the WN algebra

After reviewing the recent results on the Drinfeld realization of the face type elliptic quantum group Bq,λ(ŝlN ) by the elliptic algebra Uq,p(ŝlN ), we investigate a fusion of the vertex operators of Uq,p(ŝlN ). The basic generating functions Λj(z) (1 ≤ j ≤ N − 1) of the deformed WN algebra are derived explicitly.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005